函数教学反思

时间:2023-12-28 11:49:52
函数教学反思

函数教学反思

作为一名人民教师,教学是重要的任务之一,借助教学反思我们可以学习到很多讲课技巧,那么你有了解过教学反思吗?下面是小编收集整理的函数教学反思,希望对大家有所帮助。

函数教学反思1

通过《变量与函数》的教学,本人对概念课的教学设计与教学实践有了更深入的了解

本设计呈现的课堂结构为:

(1)揭示学习目标;

(2)引入数学原型;

(3)抽象出数学现实,逐步达致数学形式化的概念;

(4)巩固概念练习(概念辨析);

(5)小结(质疑)

一、如何揭示学习目标

概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入.初中涉及的函数概念的核心是“量与量之间的特殊对应关系”.本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高.你知道其中的道理吗?”、“引例2.我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外.问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系.上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”.数学研究有时从最简单、特殊的情况入手,化繁为简.让学生明确,这一节课我们只研究两个量之间的特殊对应关系.“特殊在什么地方?”学生需带着这样的问题开始这一课的学习.概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法.当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。

二、如何选取合适的数学原型

从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单.真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等.简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质.本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示).这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念.由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象.过难、过繁的背景会成为学生学习抽象新概念的拦路虎。

三、如何引领学生经历数学化、形式化的过程

“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境.但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节.从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题.本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?

通过哪一个量可以确定另一个量?”在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量.由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。

四、如何引用反例

学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵.反例引用的时机、反例的量要恰到好处.过早、过多的反例会干扰学生对概念的准确理解.概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景.这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。

在备课时,我想从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系.而在(2)班实际上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。

后来在(1)班上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的`函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。

函数教学反思2

一、备课反思:

本节课的教学内容是人教版八年级数学下册第十七章第二节第一课时的内容。本节课讨论了反比例函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。

二、教学反思:

教学时,能够达到三维目标的要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题 ……此处隐藏7160个字……一般,具体到抽象的研究过程,运动研究函数的一般方法,掌握幂函数的图像特征与性质。

(3)能够利用幂函数的性质比较两个数的大小

教学重点与难点如下

教学重点:通过让学生经历几个特殊幂函数的研究过程,抽象概括幂函数的图像与性质

教学难点:根据具体的幂函数的图像与性质归纳出一般幂函数的图像与性质

本节课的教学采用开放式的自主学习方式,通过引导学生对几个具体的幂函数的研究让学生归纳出一般幂函数的图像与性质。

本节课的教学过程分为三个阶段:一是概念建构;二是实验探究;三是性质应用

2、教学过程剖析

2.1创设情境 建构概念

问题1 (1)正方形的边长a与面积S之间是函数关系吗?

(2)正方体的边长a与体积V之间是函数关系吗?

【设计意图】 从实际的问题引入,让学生感受幂函数与实际的联系,初步感受幂函数

学生找到两个变量之间的函数关系,并给出函数的解析式: 和 。

师:我们把形如 的函数称为幂函数。

直接给出定义,这里其实可以让学生再举几个类似的函数的例子,通过多个实例再让学生抽象幂函数的定义会更好。

师:我们研究问题一般是从特殊到一般,具体到抽象的一个过程,因此我们可以先研究几个特殊的幂函数,比如最特殊 ,图像长什么样子?

生:是一条直线。

师:你确定是一条直线吗?

生:是一条直线去掉一个点 师:为什么?

生:定义域中x不能取到0。

师:我们研究函数一般先看函数的定义域。

师:我们可以先研究 的情况,你打算研究 为哪些值?

【设计意图】引导学生思考如何选取 的研究起来比较方便,一般学生会选择 为1,2,3来进行研究,实际操作中因为笔者的课堂利用了图形计算器,也可以让学生多取一些值,借助于图形计算器让学生绘制更多幂函数的图像,从而概括得到一般幂函数的图像与性质,这样学生的学习自主性更强,教师可以减少一些介入。

函数教学反思13

直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。锐角三角函数在解决现实问题中有着重要的作用,因此,学好本节中关于锐角的三种三角函数,正切,正弦,余弦的定义是关键。

通过这一阶段的课堂教学,在合作探究中培养学生的问题意识,同学们的表现有了明显的转变,课堂上有问题能及时提出来,有的同学一堂课能提出好几个问题,其他同学对提出的问题争先恐后地辩解,争得面红耳赤。

本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状有关系吗?进一步深入地去认识三角函数;当得出正切的概念后,学生们就提出:能不能把公式变形成积的形式,去求边,这个问题已经把本课的内容拓展了,说明学生的问题意识已经增强了,能够合理地提出问题。至此,每个学生在课堂的表现明显改变,表现得积极、主动、问题意识强。

在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。

在这节课的教学中存在许多缺陷,促使我进一步研究和探索。我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。

总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。

函数教学反思14

函数是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。

今天的教学重点是正比例函数的定义和特点,学生在完成目标导学时,较好地完成课本中的问题,合作探究讨论也比较热烈,效果较好。

关于发展观察、分析、归纳、概括等数学思维能力的反思。

从课堂教学的现场情况看,本节课有四个环节蕴含着观察、分析、比较、归纳、概括等数学思维的活动。下面分别加以分析:

第一个环节是正比例函数概念的形成过程。通过对不同的函数解析式的观察、分析,再加上反例的映衬(对比),学生发现了正比例函数解析表达式的基本结构:一个常量与自变量的积(y=kx)。因此,在这一环节,教师给学生提供了自己发现和解决问题的机会,较好地发展了学生的思维能力。

“自主探究”是当前课程改革积极倡导的学习方式。但是,在日常教学中,我们发现,面对一个新的问题,学生常常不知道从哪里着手解决问题,特别是新知识的探究过程。追其根源,主要是缺乏探究问题的基本策略。如果能够通过本节内容的学习使学生了解函数学习的基本程序和策略,那么,在今后学习一次函数、反比例函数、二次函数等函数的时候,或许无需教师提醒学生就知道如何探究了。

理论上说:“没有教不会的学生,只有不会教的老师。”但对大面积的小学就已经对学习绝望的孩子我真的心有余而力不足。我只能尽我最大的努力让更多的孩子能跟的上,不要对数学绝望。

函数教学反思15

《函数》这部分内容是很多学生,尤其是令女学生们很头疼的部分,我采取的复习策略是先梳理知识结构,即回顾一次函数、反比例函数、二次函数的性质,各自表达式中的系数在其对应的函数图像中所起的作用,同时举例说明,对典型例题进行讲解,最后讲解练习册中的习题。

复习过程中我发现很多学生对各类函数的基本性质要么记忆不牢,要么记住了却不会灵活地运用到题目中。相当一部分学生不能将函数表达式与图形结合起来考虑问题,缺乏“数形结合”的思想。比如,有次课后我和学生交流时有女同学说自己对函数部分学得一塌糊涂,当时学的时候没有学明白,现在纯粹听不懂我在讲些什么,我找了一道较为简单的题目(已经讲过的)问她听懂了没,她说没有,这道题目告诉了一反比例函数图像过点(-2,3),求表达式。像这类题目我在讲解练习时基本都是一带而过,只说出结果的,因为反比例函数的一般表达式为y=k/x,确定表达式只需要图像上一个坐标点即可,这名学生看到坐标点却不知如何运用这个信息,难怪她听不懂。更不用说函数的综合应用了。

像她这样“听不懂”的学生很多,就其原因还是对基础知识点记忆、理解、不透,尤其是“数形结合”的思想不能较好运用。鉴于此,我觉得必须改变复习策略,不能将重点放在大量的练习上,应该首先争取使他们“听得懂”,基础知识过关,才能再练习一些难度较大的题目。

《函数教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式